
“Getting Started With Dynamic Modeling in FLAC3D ”
Online12 may. 2025 - 13 may. 2025
This training supplies the tools needed to describe and apply the workflow for dynamic analysis in FLAC3D, demonstrating a comprehensive understanding of each step involved, including model setup, boundary conditions, input signal application, and damping, to effectively analyze dynamic behavior in geotechnical simulations.

Python in Itasca Software
Online11 jun. 2025 - 12 jun. 2025
This course provides an overview of the Python programming language in Itasca software.
The course covers major applications of Python to extend modeling capabilities with the Itasca codes through many applied examples.

IMAT Training: Revolutionizing Mining Analysis with Seismology & Numerical Modeling
Minneapolis, Minnesota, United States16 jun. 2025 - 18 jun. 2025
Explore IMAT’s latest upgrade, uniting open-pit and underground mining capabilities for faster, smarter, and more efficient modeling.
Tutoriales de Software
An Introduction to Python Scripting: Part 2
Introduction to Python scripting by reviewing key concepts and through demonstrations. Part 2 focuses on classes and objects plus lists and dictionaries.
Converting Plots to Data Files
Any model plot that you create interactively by adding plot-items and adjusting settings can be represented by an equivalent set of commands. This is useful should you want to include command-driven plotting in your modeling run.
Using Python in Itasca Software
Python scripting is built into current versions of FLAC3D, 3DEC, and PFC. This video introduces users of Itasca software to working with Python and FLAC3D, 3DEC, and PFC types (zones, blocks, ball, structural elements, and so on). The Itasca Module, a comparison with FISH scripting, and object-oriented and array-oriented interfaces are reviewed and demonstrated.
Artículos Técnicos
Formulation and Application of a Constitutive Model for Multijointed Material to Rock Mass Engineering
This paper presents the formulation of a constitutive model to simulate the behavior of foliated rock mass. The 3D elastoplastic constitutive model, called Comba, accounts for the presence of arbitrary orientations of weakness in a nonisotropic elastoplastic matrix.
Which fractures are imaged with Ground Penetrating Radar? Results from an experiment in the Äspö Hardrock Laboratory, Sweden
Identifying fractures in the subsurface is crucial for many geomechanical and hydrogeological applications. Here, we assess the ability of the Ground Penetrating Radar (GPR) method to image open fractures with sub-mm apertures in the context of future deep disposal of radioactive waste.
Tunnelling and reinforcement in heterogeneous ground – A case study
Abstract
A case study of tunnelling in heterogeneous ground conditions has been analysed. The case involves a tunnel excavated in mixed-face conditions, where the main host material was rock, but for a distance of about 30 m, the tunnel had to be driven through a thick layer of soil, primarily moraine and sandy soil materials.During tunnel drifting, a "chimney" cave developed through the soil layer, resulting in a surface sinkhole.This case was analysed using a three-dimensional numerical model with the FLAC3D software code, in which the soil stratigraphy and tunnel advance were modelled in detail. Tunnel and soil reinforcement in the form of jet grouting of the soil, pipe umbrella arch system, bolting, and shotcreting, was explicitly simulated in the model. The studyaimed at comparing model results with observations and measurements of ground behaviour, and to replicate the major deformation pattern observed. The modelling work was based on a previous generic study in which various factors influencing tunnel and ground surface deformations were analysed for different cases of heterogeneous ground conditions.Model calibration was performed through adjusting the soil shear strength. The calibration provided a qualitatively good agreement with observed behaviour. Calculated deformations on the ground surface were in line with measured deformations, and the location of the tunnel collapse predicted by the model. The installed tunnel reinforcement proved to be critical to match with observed behaviour. Without installed pipe umbrella arch system, calculated deformations were overestimated, and exclusion of jet grouting caused collapse of the tunnel. These findings prove that, in particular, jet grouting of the soil layer was necessary for the successful tunnel advance through the soil layer.