Artículos Técnicos

Mine Dewatering in a Compartmentalized Hydrogeologic Setting at Sishen Mine in South Africa

Sishen mine in South Africa is one of the largest open-pit iron mines in the world.

Depressurising an Underground Ore Body at the McArthur River Mine in Northern Saskatchewan, Canada

Pre-mining depressurising of a deep ore body at the McArthur River mine in northern Saskatchewan was considered to decrease the risk associated with mining near 5 MPa water pressure and increasing the amount of ore that can be extracted.

The nexus between groundwater modeling, pit lake chemogenesis and ecological risk from arsenic in the Getchell Main Pit, Nevada, U.S.A.

The proliferation of mine pits that intersect the groundwater table has engendered interest in environmental consequences of the lakes that form after cessation of dewatering.

A Calibrated Predictive Geochemical Model of Leaching and Attenuation Reactions in a Mine Pit Lake

A geochemical model was developed to predict future water quality of the Cove pit lake in support of site closure and regulatory permitting.

Neutral mine drainage water-quality impacts from a form taconite mine

Surface waters at the site of a former Minnesota taconite mine were reported to have solute concentrations elevated with respect to water-quality standards.

Use of a Chemical Transport Code for the Prediction of Gold Heap Leach Production

Itasca Denver, Inc., (Itasca) in conjunction with Newmont Mining Corporation (NMC) developed a numerical model to estimate gold (Au) production from NMC’s heap-leach operations.

Simulation of Three-Dimensional Pore-Pressure Distribution for Slope-Stability Analysis

A 3D groundwater flow model was constructed using MINEDW [1] to simulate pore pressure at the Chuquicamata open pit mine slope in Chile.

Use of a Finite Element Code to Model Complex Mine Water Problems

Numerical models are now used routinely to predict ground-water inflows to both surface and underground mines and to help design dewatering systems.

The Economic Challenges of Dewatering at the Victor Diamond Mine in Northern Ontario, Canada

The challenges of mining economically have never been greater than under current global financial conditions.

Numerical Evaluation of Effectiveness of Drainwells in Dewatering Overburden at Surface Coal Mines

Typical sedimentary sequences overlying coal seams consist of interbedded sandstones, siltstones, shales, and rider coal seams.

Packer Testing Program Design and Management

Hydraulic testing using wireline deployed water-inflated packers is becoming a common practice for groundwater characterization at mining sites.

Using MINEDWto simulate pore pressure as input for FLAC3Dand 3DEC

It has become common practice to create a three-dimensional (3-D) geomechanical model for the analysis of rock stability.

FLAC3D mesh and zone quality

Mesh quality is crucial for the stability, accuracy, and fast convergence of numerical simulations. However, given the geometrical complexity of some models and the tools available for mesh creation, it is often necessary to accept meshes that deviate significantly from the known ideal shape.

Numerical modeling of rock blasting: Validation tests for Blo-Up 2.5

As part of the Hybrid Stress Blast Model (HSBM) project, Itasca has developed software to model the rock blasting process.

A Strategic Rock Mechanics Study for The Kevitsa Open Pit Mine

The Boliden Kevitsa open pit mine is revising its strategic plan with a new pit optimization project undertaken to investigate an increase in production.

Numerical modelling and seismicity at the Kiirunavaara Mine

What’s happening at the Kiirunavaara Mine?

Regional-scale numerical stress model of the Stockholm area

Analyze the initial stress state in the central and southern areas of Stockholm for the Metro to Nacka and Southern Stockholm.

Deep Sublevel Cave Mining and Surface Influence

With increasing depth, higher stress and more difficult mining. With increasing depth is there more ground surface effects or less?

Tunneldrivning i heterogena förhållanden

InledningProblem: Brist på erfarenhet av tunneldrivning i heterogena förhållanden med konventionell uttagsteknik (borrning och sprängning).

Mål: Fördjupa kunskapen och förståelse av brott och deformationsmönster vid dessa förhållanden.

Three-dimensional Modeling and Stress Calibration for a Complex Mining Geometry

Study stress situation for potential continued mining towards greater depths; stress calibration against stress measurements using numerical modeling; and use of calibrated model to study stresses at existing infrastructure, study stresses at potential future haulage level locations, and as input to local models.

Application of InSAR for Monitoring Deformations at the Kiirunavaara Mine

Assess the use InSAR technology for LKAB's purposes - as a replacement and/or complement to current GPS measurements.

Tunnelling and reinforcement in heterogeneous ground – A case study

Abstract

A case study of tunnelling in heterogeneous ground conditions has been analysed. The case involves a tunnel excavated in mixed-face conditions, where the main host material was rock, but for a distance of about 30 m, the tunnel had to be driven through a thick layer of soil, primarily moraine and sandy soil materials.During tunnel drifting, a "chimney" cave developed through the soil layer, resulting in a surface sinkhole.This case was analysed using a three-dimensional numerical model with the FLAC3D software code, in which the soil stratigraphy and tunnel advance were modelled in detail. Tunnel and soil reinforcement in the form of jet grouting of the soil, pipe umbrella arch system, bolting, and shotcreting, was explicitly simulated in the model. The studyaimed at comparing model results with observations and measurements of ground behaviour, and to replicate the major deformation pattern observed. The modelling work was based on a previous generic study in which various factors influencing tunnel and ground surface deformations were analysed for different cases of heterogeneous ground conditions.Model calibration was performed through adjusting the soil shear strength. The calibration provided a qualitatively good agreement with observed behaviour. Calculated deformations on the ground surface were in line with measured deformations, and the location of the tunnel collapse predicted by the model. The installed tunnel reinforcement proved to be critical to match with observed behaviour. Without installed pipe umbrella arch system, calculated deformations were overestimated, and exclusion of jet grouting caused collapse of the tunnel. These findings prove that, in particular, jet grouting of the soil layer was necessary for the successful tunnel advance through the soil layer.

Input to Orepass Design — A Numerical Modeling Study

Orepass design guidelines required for potentially continued mining at depth. Rock strength and stress state were validated through comparison with observed fallouts in orepasses and shafts and the optimal orientation and location of orepasses for future mining were determined.

Últimas noticias

Próximos Eventos
1 Oct.
FLAC3D 7.0 Introductory training course
... Leer mas
14 Oct.
Focused Seismic and Liquefaction Training 2019
... Leer mas
26 Nov.
FLAC3D V7.0 Training Course November 2019
FLAC3D TMis a numerical modeling code for advanced geotechnical analysis of soil, rock, and structural support in three dimensions. FLA... Leer mas